TY - JOUR
T1 - Uniqueness of mild solutions of the Navier-Stokes system in LN
AU - Lions, P. L.
AU - Masmoudi, N.
PY - 2001
Y1 - 2001
N2 - We prove the uniqueness of mild solutions and very weak solutions of the Navier-Stokes equations in C([0, T); LN(Ω)), where Ω is the whole space ℝN, a regular domain of ℝN or the torus double-struck T signN with N ≥ 3. The proof relies upon three elementary ingredients: the introduction of a "dual" problem, a decomposition of the solutions and a "bootstrap" argument.
AB - We prove the uniqueness of mild solutions and very weak solutions of the Navier-Stokes equations in C([0, T); LN(Ω)), where Ω is the whole space ℝN, a regular domain of ℝN or the torus double-struck T signN with N ≥ 3. The proof relies upon three elementary ingredients: the introduction of a "dual" problem, a decomposition of the solutions and a "bootstrap" argument.
UR - http://www.scopus.com/inward/record.url?scp=0344509270&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0344509270&partnerID=8YFLogxK
U2 - 10.1081/PDE-100107819
DO - 10.1081/PDE-100107819
M3 - Article
AN - SCOPUS:0344509270
SN - 0360-5302
VL - 26
SP - 2211
EP - 2226
JO - Communications in Partial Differential Equations
JF - Communications in Partial Differential Equations
IS - 11-12
ER -