Upgrading MLSI to LSI for reversible Markov chains

Justin Salez, Konstantin Tikhomirov, Pierre Youssef

Research output: Contribution to journalArticlepeer-review

Abstract

For reversible Markov chains on finite state spaces, we show that the modified log-Sobolev inequality (MLSI) can be upgraded to a log-Sobolev inequality (LSI) at the surprisingly low cost of degrading the associated constant by log⁡(1/p), where p is the minimum non-zero transition probability. We illustrate this by providing the first log-Sobolev estimate for Zero-Range processes on arbitrary graphs. As another application, we determine the modified log-Sobolev constant of the Lamplighter chain on all bounded-degree graphs, and use it to provide negative answers to two open questions by Montenegro and Tetali (2006) [27] and Hermon and Peres (2018) [17]. Our proof builds upon the ‘regularization trick’ recently introduced by the last two authors.

Original languageEnglish (US)
Article number110076
JournalJournal of Functional Analysis
Volume285
Issue number9
DOIs
StatePublished - Nov 1 2023

Keywords

  • Functional inequalities
  • Logarithmic Sobolev inequalities
  • Mixing times
  • Modified log-Sobolev inequalities
  • Reversible Markov chains

ASJC Scopus subject areas

  • Analysis

Fingerprint

Dive into the research topics of 'Upgrading MLSI to LSI for reversible Markov chains'. Together they form a unique fingerprint.

Cite this