TY - JOUR
T1 - Urinary polycyclic aromatic hydrocarbons and measures of oxidative stress, inflammation and renal function in adolescents
T2 - NHANES 2003-2008
AU - Farzan, Shohreh F.
AU - Chen, Yu
AU - Trachtman, Howard
AU - Trasande, Leonardo
N1 - Publisher Copyright:
© 2015 Elsevier Inc.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Objective: Recent evidence has suggested that polycyclic aromatic hydrocarbons (PAHs) may contribute to cardiometabolic and kidney dysfunction by increasing oxidative stress, but little is known about impacts in childhood. Study design: We performed cross-sectional analyses of 660 adolescents aged 12-19 years in the 2003-2008 National Health and Nutrition Examination Survey (NHANES), using levels of 10 monohydroxylated urinary PAH metabolites as our exposure. Our primary outcomes of interest were biomarkers of oxidative stress and renal function, including estimated glomerular filtration rate (eGFR), urinary albumin to creatinine ratio (ACR), insulin resistance, and serum uric acid, gamma glutamyl transferase (GGT) and C-reactive protein (CRP). Results: We observed statistically significant associations between PAH metabolites and levels of serum GGT, CRP, uric acid and eGFR. Each 100% increase in 2-hydroxyphenanthrene was related to a 3.36% increase in uric acid (95% CI: 0.338-6.372; p=0.032), a 3.86% increase in GGT (95% CI: 1.361-6.362; p=0.005) and a 16.78% increase in CRP (95% CI: 1.848-31.689; p=0.029). Each 100% increase in 4-hydroxyphenanthrene was associated with a 6.18% increase in GGT (95% CI: 4.064-8.301; p<0.001) and a 13.66% increase in CRP (95% CI: 2.764-24.564; p=0.017). Each 100% increase in 9-hydroxyfluorene was associated with a 2.58% increase in GGT (95% CI: 0.389-4776; p=0.024). Each 100% increase in 3-hydroxyphenanthrene was associated with a 2.66% decrease in eGFR (95% CI: -4.979 to -0.331; p=0.028). Conclusions: Urinary PAH metabolites were associated with serum uric acid, GGT and CRP, suggesting possible impacts on cardiometabolic and kidney function in adolescents. Prospective work is needed to investigate the potential long-term health consequences of these findings.
AB - Objective: Recent evidence has suggested that polycyclic aromatic hydrocarbons (PAHs) may contribute to cardiometabolic and kidney dysfunction by increasing oxidative stress, but little is known about impacts in childhood. Study design: We performed cross-sectional analyses of 660 adolescents aged 12-19 years in the 2003-2008 National Health and Nutrition Examination Survey (NHANES), using levels of 10 monohydroxylated urinary PAH metabolites as our exposure. Our primary outcomes of interest were biomarkers of oxidative stress and renal function, including estimated glomerular filtration rate (eGFR), urinary albumin to creatinine ratio (ACR), insulin resistance, and serum uric acid, gamma glutamyl transferase (GGT) and C-reactive protein (CRP). Results: We observed statistically significant associations between PAH metabolites and levels of serum GGT, CRP, uric acid and eGFR. Each 100% increase in 2-hydroxyphenanthrene was related to a 3.36% increase in uric acid (95% CI: 0.338-6.372; p=0.032), a 3.86% increase in GGT (95% CI: 1.361-6.362; p=0.005) and a 16.78% increase in CRP (95% CI: 1.848-31.689; p=0.029). Each 100% increase in 4-hydroxyphenanthrene was associated with a 6.18% increase in GGT (95% CI: 4.064-8.301; p<0.001) and a 13.66% increase in CRP (95% CI: 2.764-24.564; p=0.017). Each 100% increase in 9-hydroxyfluorene was associated with a 2.58% increase in GGT (95% CI: 0.389-4776; p=0.024). Each 100% increase in 3-hydroxyphenanthrene was associated with a 2.66% decrease in eGFR (95% CI: -4.979 to -0.331; p=0.028). Conclusions: Urinary PAH metabolites were associated with serum uric acid, GGT and CRP, suggesting possible impacts on cardiometabolic and kidney function in adolescents. Prospective work is needed to investigate the potential long-term health consequences of these findings.
KW - Adolescents
KW - C-reactive protein (CRP)
KW - Estimated glomerular filtration rate (eGFR)
KW - Gamma glutamyl transferase (GGT)
KW - National Health and Nutrition Examination Survey (NHANES)
KW - Polycyclic aromatic hydrocarbons (PAH)
UR - http://www.scopus.com/inward/record.url?scp=84947715643&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84947715643&partnerID=8YFLogxK
U2 - 10.1016/j.envres.2015.11.012
DO - 10.1016/j.envres.2015.11.012
M3 - Article
C2 - 26610293
AN - SCOPUS:84947715643
SN - 0013-9351
VL - 144
SP - 149
EP - 157
JO - Environmental Research
JF - Environmental Research
ER -