TY - JOUR
T1 - Urine arsenic concentrations and species excretion patterns in American Indian communities over a 10-year period
T2 - The strong heart study
AU - Navas-Acien, Ana
AU - Umans, Jason G.
AU - Howard, Barbara V.
AU - Goessler, Walter
AU - Francesconi, Kevin A.
AU - Crainiceanu, Ciprian M.
AU - Silbergeld, Ellen K.
AU - Guallar, Eliseo
PY - 2009
Y1 - 2009
N2 - Background: Arsenic exposure in drinking water disproportionately affects small communities in some U.S. regions, including American Indian communities. In U.S. adults with no seafood intake, median total urine arsenic is 3.4 μg/L. Objective: We evaluated arsenic exposure and excretion patterns using urine samples collected over 10 years in a random sample of American Indians from Arizona, Oklahoma, and North and South Dakota who participated in a cohort study from 1989 to 1999. Methods: We measured total urine arsenic and arsenic species [inorganic arsenic (arsenite and arsenate), methylarsonate (MA), dimethylarsinate (DMA), and arsenobetaine] concentrations in 60 participants (three urine samples each, for a total of 180 urine samples) using inductively coupled plasma/mass spectrometry (ICPMS) and high-performance liquid chromatography/ICPMS, respectively. Results: Median (10th, 90th percentiles) urine concentration for the sum of inorganic arsenic, MA, and DMA at baseline was 7.2 (3.1, 16.9) μg/g creatinine; the median was higher in Arizona (12.5 μg/g), intermediate in the Dakotas (9.1 μg/g), and lower in Oklahoma (4.4 μg/g). The mean percentage distribution of arsenic species over the sum of inorganic and methylated species was 10.6% for inorganic arsenic, 18.4% for MA, and 70.9% for DMA. The intraclass correlation coefficient for three repeated arsenic measurements over a 10-year period was 0.80 for the sum of inorganic and methylated species and 0.64, 0.80, and 0.77 for percent inorganic arsenic, percent MA, and percent DMA, respectively. Conclusions: This study found low to moderate inorganic arsenic exposure and confirmed long-term constancy in arsenic exposure and urine excretion patterns in American Indians from three U.S. regions over a 10-year period. Our findings support the feasibility of analyzing arsenic species in large population-based studies with stored urine samples.
AB - Background: Arsenic exposure in drinking water disproportionately affects small communities in some U.S. regions, including American Indian communities. In U.S. adults with no seafood intake, median total urine arsenic is 3.4 μg/L. Objective: We evaluated arsenic exposure and excretion patterns using urine samples collected over 10 years in a random sample of American Indians from Arizona, Oklahoma, and North and South Dakota who participated in a cohort study from 1989 to 1999. Methods: We measured total urine arsenic and arsenic species [inorganic arsenic (arsenite and arsenate), methylarsonate (MA), dimethylarsinate (DMA), and arsenobetaine] concentrations in 60 participants (three urine samples each, for a total of 180 urine samples) using inductively coupled plasma/mass spectrometry (ICPMS) and high-performance liquid chromatography/ICPMS, respectively. Results: Median (10th, 90th percentiles) urine concentration for the sum of inorganic arsenic, MA, and DMA at baseline was 7.2 (3.1, 16.9) μg/g creatinine; the median was higher in Arizona (12.5 μg/g), intermediate in the Dakotas (9.1 μg/g), and lower in Oklahoma (4.4 μg/g). The mean percentage distribution of arsenic species over the sum of inorganic and methylated species was 10.6% for inorganic arsenic, 18.4% for MA, and 70.9% for DMA. The intraclass correlation coefficient for three repeated arsenic measurements over a 10-year period was 0.80 for the sum of inorganic and methylated species and 0.64, 0.80, and 0.77 for percent inorganic arsenic, percent MA, and percent DMA, respectively. Conclusions: This study found low to moderate inorganic arsenic exposure and confirmed long-term constancy in arsenic exposure and urine excretion patterns in American Indians from three U.S. regions over a 10-year period. Our findings support the feasibility of analyzing arsenic species in large population-based studies with stored urine samples.
KW - American Indians
KW - Analytical chemistry
KW - Arsenic
KW - Arsenic species
KW - Arsenobetaine
KW - Exposure assessment
KW - Metabolism
KW - Mixed-effects models
KW - Multilevel analysis
KW - Strong Heart Study
UR - http://www.scopus.com/inward/record.url?scp=69949108531&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=69949108531&partnerID=8YFLogxK
U2 - 10.1289/ehp.0800509
DO - 10.1289/ehp.0800509
M3 - Article
C2 - 19750109
AN - SCOPUS:69949108531
SN - 0091-6765
VL - 117
SP - 1428
EP - 1433
JO - Environmental health perspectives
JF - Environmental health perspectives
IS - 9
ER -