Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic

Caspar J. Van Lissa, Wolfgang Stroebe, Michelle R. vanDellen, N. Pontus Leander, Maximilian Agostini, Tim Draws, Andrii Grygoryshyn, Ben Gützgow, Jannis Kreienkamp, Clara S. Vetter, Georgios Abakoumkin, Jamilah Hanum Abdul Khaiyom, Vjolica Ahmedi, Handan Akkas, Carlos A. Almenara, Mohsin Atta, Sabahat Cigdem Bagci, Sima Basel, Edona Berisha Kida, Allan B.I. BernardoNicholas R. Buttrick, Phatthanakit Chobthamkit, Hoon Seok Choi, Mioara Cristea, Sára Csaba, Kaja Damnjanović, Ivan Danyliuk, Arobindu Dash, Daniela Di Santo, Karen M. Douglas, Violeta Enea, Daiane Gracieli Faller, Gavan J. Fitzsimons, Alexandra Gheorghiu, Ángel Gómez, Ali Hamaidia, Qing Han, Mai Helmy, Joevarian Hudiyana, Bertus F. Jeronimus, Ding Yu Jiang, Veljko Jovanović, Željka Kamenov, Anna Kende, Shian Ling Keng, Tra Thi Thanh Kieu, Yasin Koc, Kamila Kovyazina, Inna Kozytska, Joshua Krause, Arie W. Kruglanksi, Anton Kurapov, Maja Kutlaca, Nóra Anna Lantos, Edward P. Lemay, Cokorda Bagus Jaya Lesmana, Winnifred R. Louis, Adrian Lueders, Najma Iqbal Malik, Anton P. Martinez, Kira O. McCabe, Jasmina Mehulić, Mirra Noor Milla, Idris Mohammed, Erica Molinario, Manuel Moyano, Hayat Muhammad, Silvana Mula, Hamdi Muluk, Solomiia Myroniuk, Reza Najafi, Claudia F. Nisa, Boglárka Nyúl, Paul A. O'Keefe, Jose Javier Olivas Osuna, Evgeny N. Osin, Joonha Park, Gennaro Pica, Antonio Pierro, Jonas H. Rees, Anne Margit Reitsema, Elena Resta, Marika Rullo, Michelle K. Ryan, Adil Samekin, Pekka Santtila, Edyta M. Sasin, Birga M. Schumpe, Heyla A. Selim, Michael Vicente Stanton, Samiah Sultana, Robbie M. Sutton, Eleftheria Tseliou, Akira Utsugi, Jolien Anne van Breen, Kees Van Veen, Alexandra Vázquez, Robin Wollast, Victoria Wai-Lan Yeung, Somayeh Zand, Iris Lav Žeželj, Bang Zheng, Andreas Zick, Claudia Zúñiga, Jocelyn J. Bélanger

Research output: Contribution to journalArticlepeer-review

Abstract

Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant.

Original languageEnglish (US)
Article number100482
JournalPatterns
Volume3
Issue number4
DOIs
StatePublished - Apr 8 2022

Keywords

  • COVID-19
  • DSML2: Proof-of-concept: Data science output has been formulated, implemented, and tested for one domain/problem
  • health behaviors
  • machine learning
  • public goods dilemma
  • random forest
  • social norms

ASJC Scopus subject areas

  • General Decision Sciences

Fingerprint

Dive into the research topics of 'Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic'. Together they form a unique fingerprint.

Cite this