TY - GEN
T1 - Variability in synthetic MoS2 devices
T2 - 76th Device Research Conference, DRC 2018
AU - Alharbi, Abdullah
AU - Shahrjerdi, Davood
N1 - Funding Information:
We acknowledge financial support by NSF-ECCS award # 1638598.
PY - 2018/8/20
Y1 - 2018/8/20
N2 - Implementing a realistic electronic system from transition metal dichalcogenides (TMDs) relies on the ability to produce high-performance devices with homogenous properties. Continuing progress on large-area growth techniques, e.g. chemical vapor deposition (CVD) has improved the optical and electrical properties of monolayer TMDs, including MoS2. However, reducing device-to-device variations remains a challenge [1]-[2], spurring new investigations to understand the physical origins of this problem in TMD devices. Here, we show that the strong coupling between the as-grown monolayer MoS2 and the SiO2 growth substrate causes (1) significant inhomogeneity in the electrical properties of the transistors and (2) significant degradation of the device metrics including carrier mobility and contact resistance. By reducing the binding energy, and thus increasing the van der Waals gap, between the MoS2 and the original growth substrate using our new gold-assisted layer transfer, we observe remarkable improvements in key device metrics (~7× in mobility and ~100× in contact resistance) and device variability (~10×).
AB - Implementing a realistic electronic system from transition metal dichalcogenides (TMDs) relies on the ability to produce high-performance devices with homogenous properties. Continuing progress on large-area growth techniques, e.g. chemical vapor deposition (CVD) has improved the optical and electrical properties of monolayer TMDs, including MoS2. However, reducing device-to-device variations remains a challenge [1]-[2], spurring new investigations to understand the physical origins of this problem in TMD devices. Here, we show that the strong coupling between the as-grown monolayer MoS2 and the SiO2 growth substrate causes (1) significant inhomogeneity in the electrical properties of the transistors and (2) significant degradation of the device metrics including carrier mobility and contact resistance. By reducing the binding energy, and thus increasing the van der Waals gap, between the MoS2 and the original growth substrate using our new gold-assisted layer transfer, we observe remarkable improvements in key device metrics (~7× in mobility and ~100× in contact resistance) and device variability (~10×).
UR - http://www.scopus.com/inward/record.url?scp=85053224226&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053224226&partnerID=8YFLogxK
U2 - 10.1109/DRC.2018.8442254
DO - 10.1109/DRC.2018.8442254
M3 - Conference contribution
AN - SCOPUS:85053224226
SN - 9781538630280
T3 - Device Research Conference - Conference Digest, DRC
BT - 2018 76th Device Research Conference, DRC 2018
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 24 June 2018 through 27 June 2018
ER -