Variable precision in visual perception

Shan Shen, Wei Ji Ma

Research output: Contribution to journalArticle

Abstract

Given the same sensory stimuli in the same task, human observers do not always make the same response. Well-known sources of behavioral variability are sensory noise and guessing. Visual short-term memory (STM) studies have suggested that the precision of the sensory noise is itself variable. However, it is unknown whether precision is also variable in perceptual tasks without a memory component. We searched for evidence for variable precision in 11 visual perception tasks with a single relevant feature, orientation. We specifically examined the effect of distractor stimuli: distractors were absent, homogeneous and fixed across trials, homogeneous and variable, or heterogeneous and variable. We first considered 4 models: with and without guessing, and with and without variability in precision. We quantified the importance of both factors using 6 metrics: factor knock-in difference, factor knock-out difference, and log factor posterior ratio, each based on AIC or BIC. According to all 6 metrics, we found strong evidence for variable precision in 5 experiments. Next, we extended our model space to include potential confounding factors: the oblique effect and decision noise. This left strong evidence for variable precision in only 1 experiment, in which distractors were homogeneous but variable. Finally, when we considered suboptimal decision rules, the evidence also disappeared in this experiment. Our results provide little evidence for variable precision overall and only a hint when distractors are variable. Methodologically, the results underline the importance of including multiple factors in factorial model comparison: Testing for only 2 factors would have yielded an incorrect conclusion.

Original languageEnglish (US)
Pages (from-to)89-132
Number of pages44
JournalPsychological Review
Volume126
Issue number1
DOIs
StatePublished - Jan 2019

    Fingerprint

Keywords

  • Bayesian inference
  • Computational modeling
  • Noise
  • Variable precision
  • Visual perception

ASJC Scopus subject areas

  • Psychology(all)

Cite this