TY - JOUR
T1 - Variable precision in visual perception
AU - Shen, Shan
AU - Ma, Wei Ji
N1 - Publisher Copyright:
© 2019 American Psychological Association.
PY - 2019/1
Y1 - 2019/1
N2 - Given the same sensory stimuli in the same task, human observers do not always make the same response. Well-known sources of behavioral variability are sensory noise and guessing. Visual short-term memory (STM) studies have suggested that the precision of the sensory noise is itself variable. However, it is unknown whether precision is also variable in perceptual tasks without a memory component. We searched for evidence for variable precision in 11 visual perception tasks with a single relevant feature, orientation. We specifically examined the effect of distractor stimuli: distractors were absent, homogeneous and fixed across trials, homogeneous and variable, or heterogeneous and variable. We first considered 4 models: with and without guessing, and with and without variability in precision. We quantified the importance of both factors using 6 metrics: factor knock-in difference, factor knock-out difference, and log factor posterior ratio, each based on AIC or BIC. According to all 6 metrics, we found strong evidence for variable precision in 5 experiments. Next, we extended our model space to include potential confounding factors: the oblique effect and decision noise. This left strong evidence for variable precision in only 1 experiment, in which distractors were homogeneous but variable. Finally, when we considered suboptimal decision rules, the evidence also disappeared in this experiment. Our results provide little evidence for variable precision overall and only a hint when distractors are variable. Methodologically, the results underline the importance of including multiple factors in factorial model comparison: Testing for only 2 factors would have yielded an incorrect conclusion.
AB - Given the same sensory stimuli in the same task, human observers do not always make the same response. Well-known sources of behavioral variability are sensory noise and guessing. Visual short-term memory (STM) studies have suggested that the precision of the sensory noise is itself variable. However, it is unknown whether precision is also variable in perceptual tasks without a memory component. We searched for evidence for variable precision in 11 visual perception tasks with a single relevant feature, orientation. We specifically examined the effect of distractor stimuli: distractors were absent, homogeneous and fixed across trials, homogeneous and variable, or heterogeneous and variable. We first considered 4 models: with and without guessing, and with and without variability in precision. We quantified the importance of both factors using 6 metrics: factor knock-in difference, factor knock-out difference, and log factor posterior ratio, each based on AIC or BIC. According to all 6 metrics, we found strong evidence for variable precision in 5 experiments. Next, we extended our model space to include potential confounding factors: the oblique effect and decision noise. This left strong evidence for variable precision in only 1 experiment, in which distractors were homogeneous but variable. Finally, when we considered suboptimal decision rules, the evidence also disappeared in this experiment. Our results provide little evidence for variable precision overall and only a hint when distractors are variable. Methodologically, the results underline the importance of including multiple factors in factorial model comparison: Testing for only 2 factors would have yielded an incorrect conclusion.
KW - Bayesian inference
KW - Computational modeling
KW - Noise
KW - Variable precision
KW - Visual perception
UR - http://www.scopus.com/inward/record.url?scp=85054998223&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054998223&partnerID=8YFLogxK
U2 - 10.1037/rev0000128
DO - 10.1037/rev0000128
M3 - Article
C2 - 30335411
AN - SCOPUS:85054998223
SN - 0033-295X
VL - 126
SP - 89
EP - 132
JO - Psychological Review
JF - Psychological Review
IS - 1
ER -