### Abstract

The standard linear regression (SLR) problem is to recover a vector x^{0} from noisy linear observations y = Ax^{0} + w. The approximate message passing (AMP) algorithm recently proposed by Donoho, Maleki, and Montanari is a computationally efficient iterative approach to SLR that has a remarkable property: for large i.i.d. sub-Gaussian matrices A, its periteration behavior is rigorously characterized by a scalar stateevolution whose fixed points, when unique, are Bayes optimal. AMP, however, is fragile in that even small deviations from the i.i.d. sub-Gaussian model can cause the algorithm to diverge. This paper considers a 'vector AMP' (VAMP) algorithm and shows that VAMP has a rigorous scalar state-evolution that holds under a much broader class of large random matrices A: those that are right-rotationally invariant. After performing an initial singular value decomposition (SVD) of A, the per-iteration complexity of VAMP is similar to that of AMP. In addition, the fixed points of VAMP's state evolution are consistent with the replica prediction of the minimum mean-squared error recently derived by Tulino, Caire, Verdú, and Shamai.

Original language | English (US) |
---|---|

Title of host publication | 2017 IEEE International Symposium on Information Theory, ISIT 2017 |

Publisher | Institute of Electrical and Electronics Engineers Inc. |

Pages | 1588-1592 |

Number of pages | 5 |

ISBN (Electronic) | 9781509040964 |

DOIs | |

State | Published - Aug 9 2017 |

Event | 2017 IEEE International Symposium on Information Theory, ISIT 2017 - Aachen, Germany Duration: Jun 25 2017 → Jun 30 2017 |

### Publication series

Name | IEEE International Symposium on Information Theory - Proceedings |
---|---|

ISSN (Print) | 2157-8095 |

### Other

Other | 2017 IEEE International Symposium on Information Theory, ISIT 2017 |
---|---|

Country | Germany |

City | Aachen |

Period | 6/25/17 → 6/30/17 |

### Fingerprint

### Keywords

- Belief propagation
- Compressive sensing
- Inference algorithms
- Message passing
- Random matrices

### ASJC Scopus subject areas

- Theoretical Computer Science
- Information Systems
- Modeling and Simulation
- Applied Mathematics

### Cite this

*2017 IEEE International Symposium on Information Theory, ISIT 2017*(pp. 1588-1592). [8006797] (IEEE International Symposium on Information Theory - Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISIT.2017.8006797