TY - JOUR
T1 - Vertical Architecture Solution-Processed Quantum Dot Photodetectors with Amorphous Selenium Hole Transport Layer
AU - Mukherjee, Atreyo
AU - Kannan, Haripriya
AU - Triet Ho, Le Thanh
AU - Han, Zhihang
AU - Stavro, Jann
AU - Howansky, Adrian
AU - Nooman, Neha
AU - Kisslinger, Kim
AU - Léveillé, Sébastien
AU - Kizilkaya, Orhan
AU - Liu, Xiangyu
AU - Mølnås, Håvard
AU - Paul, Shlok Joseph
AU - Sung, Dong Hyun
AU - Riedo, Elisa
AU - Rumaiz, Abdul
AU - Vasileska, Dragica
AU - Zhao, Wei
AU - Sahu, Ayaskanta
AU - Goldan, Amir H.
N1 - Publisher Copyright:
© 2022 American Chemical Society.
PY - 2023/1/18
Y1 - 2023/1/18
N2 - Colloidal quantum dots (CQDs) provide wide spectral tunability and high absorption coefficients owing to quantum confinement and large oscillator strengths, which along with solution processability, allow a facile, low-cost, and room-temperature deposition technique for the fabrication of photonic devices. However, many solution-processed CQD photodetector devices demonstrate low specific-detectivity and slow temporal response. To achieve improved photodetector characteristics, limiting carrier recombination and enhancing photogenerated carrier separation are crucial. In this study, we develop and present an alternate vertical-stack photodetector wherein we use a solution-processed quantum dot photoconversion layer coupled to an amorphous selenium (a-Se) wide-bandgap charge transport layer that is capable of exhibiting single-carrier hole impact ionization and is compatible with active-matrix readout circuitry. This a-Se chalcogenide transport layer enables the fabrication of high-performance and reliable solution-processed quantum dot photodetectors, with enhanced charge extraction capabilities, high specific detectivity (D* ∼ 0.5-5 × 1012 Jones), fast 3 dB electrical bandwidth (3 dB BW ∼ 22 MHz), low dark current density (JD ∼ 5-10 pA/cm2), low noise current (in ∼ 20-25 fW/Hz1/2), and high linear dynamic range (LDR ∼ 130-150 dB) across the measured visible electromagnetic spectrum (∼405-656 nm).
AB - Colloidal quantum dots (CQDs) provide wide spectral tunability and high absorption coefficients owing to quantum confinement and large oscillator strengths, which along with solution processability, allow a facile, low-cost, and room-temperature deposition technique for the fabrication of photonic devices. However, many solution-processed CQD photodetector devices demonstrate low specific-detectivity and slow temporal response. To achieve improved photodetector characteristics, limiting carrier recombination and enhancing photogenerated carrier separation are crucial. In this study, we develop and present an alternate vertical-stack photodetector wherein we use a solution-processed quantum dot photoconversion layer coupled to an amorphous selenium (a-Se) wide-bandgap charge transport layer that is capable of exhibiting single-carrier hole impact ionization and is compatible with active-matrix readout circuitry. This a-Se chalcogenide transport layer enables the fabrication of high-performance and reliable solution-processed quantum dot photodetectors, with enhanced charge extraction capabilities, high specific detectivity (D* ∼ 0.5-5 × 1012 Jones), fast 3 dB electrical bandwidth (3 dB BW ∼ 22 MHz), low dark current density (JD ∼ 5-10 pA/cm2), low noise current (in ∼ 20-25 fW/Hz1/2), and high linear dynamic range (LDR ∼ 130-150 dB) across the measured visible electromagnetic spectrum (∼405-656 nm).
KW - amorphous hole transport layer
KW - avalanche photodiodes
KW - avalanche transport layer
KW - cadmium selenide quantum dots
KW - colloidal quantum dot photodetectors
KW - vertical-stack photodetectors
UR - http://www.scopus.com/inward/record.url?scp=85145576228&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85145576228&partnerID=8YFLogxK
U2 - 10.1021/acsphotonics.2c01353
DO - 10.1021/acsphotonics.2c01353
M3 - Article
AN - SCOPUS:85145576228
SN - 2330-4022
VL - 10
SP - 134
EP - 146
JO - ACS Photonics
JF - ACS Photonics
IS - 1
ER -