Very deep multilingual convolutional neural networks for LVCSR

Tom Sercu, Christian Puhrsch, Brian Kingsbury, Yann Lecun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Convolutional neural networks (CNNs) are a standard component of many current state-of-the-art Large Vocabulary Continuous Speech Recognition (LVCSR) systems. However, CNNs in LVCSR have not kept pace with recent advances in other domains where deeper neural networks provide superior performance. In this paper we propose a number of architectural advances in CNNs for LVCSR. First, we introduce a very deep convolutional network architecture with up to 14 weight layers. There are multiple convolutional layers before each pooling layer, with small 3×3 kernels, inspired by the VGG Imagenet 2014 architecture. Then, we introduce multilingual CNNs with multiple untied layers. Finally, we introduce multi-scale input features aimed at exploiting more context at negligible computational cost. We evaluate the improvements first on a Babel task for low resource speech recognition, obtaining an absolute 5.77% WER improvement over the baseline PLP DNN by training our CNN on the combined data of six different languages. We then evaluate the very deep CNNs on the Hub5'00 benchmark (using the 262 hours of SWB-1 training data) achieving a word error rate of 11.8% after cross-entropy training, a 1.4% WER improvement (10.6% relative) over the best published CNN result so far.

Original languageEnglish (US)
Title of host publication2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4955-4959
Number of pages5
ISBN (Electronic)9781479999880
DOIs
StatePublished - May 18 2016
Event41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Shanghai, China
Duration: Mar 20 2016Mar 25 2016

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2016-May
ISSN (Print)1520-6149

Other

Other41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016
Country/TerritoryChina
CityShanghai
Period3/20/163/25/16

Keywords

  • Acoustic Modeling
  • Convolutional Networks
  • Multilingual
  • Neural Networks
  • Speech Recognition

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Very deep multilingual convolutional neural networks for LVCSR'. Together they form a unique fingerprint.

Cite this