Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception

Sheng Liu, Dora E. Angelaki

Research output: Contribution to journalArticlepeer-review

Abstract

Visual and vestibular signals converge onto the dorsal medial superior temporal area (MSTd) of the macaque extrastriate visual cortex, which is thought to be involved in multisensory heading perception for spatial navigation. Peripheral otolith information, however, is ambiguous and cannot distinguish linear accelerations experienced during self-motion from those resulting from changes in spatial orientation relative to gravity. Here we show that, unlike peripheral vestibular sensors but similar to lobules 9 and 10 of the cerebellar vermis (nodulus and uvula), MSTd neurons respond selectively to heading and not to changes in orientation relative to gravity. In support of a role in heading perception, MSTd vestibular responses are also dominated by velocity-like temporal dynamics, which might optimize sensory integration with visual motion information. Unlike the cerebellar vermis, however, MSTd neurons also carry a spatial orientation-independent rotation signal from the semicircular canals, which could be useful in compensating for the effects of head rotation on the processing of optic flow. These findings show that vestibular signals in MSTd are appropriately processed to support a functional role in multisensory heading perception.

Original languageEnglish (US)
Pages (from-to)8936-8945
Number of pages10
JournalJournal of Neuroscience
Volume29
Issue number28
DOIs
StatePublished - Jul 15 2009

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception'. Together they form a unique fingerprint.

Cite this