Adrien Bardes, Jean Ponce, Yann LeCun

Research output: Contribution to conferencePaperpeer-review


Recent self-supervised methods for image representation learning maximize the agreement between embedding vectors produced by encoders fed with different views of the same image. The main challenge is to prevent a collapse in which the encoders produce constant or non-informative vectors. We introduce VICReg (Variance-Invariance-Covariance Regularization), a method that explicitly avoids the collapse problem with two regularizations terms applied to both embeddings separately: (1) a term that maintains the variance of each embedding dimension above a threshold, (2) a term that decorrelates each pair of variables. Unlike most other approaches to the same problem, VICReg does not require techniques such as: weight sharing between the branches, batch normalization, feature-wise normalization, output quantization, stop gradient, memory banks, etc., and achieves results on par with the state of the art on several downstream tasks. In addition, we show that our variance regularization term stabilizes the training of other methods and leads to performance improvements.

Original languageEnglish (US)
StatePublished - 2022
Event10th International Conference on Learning Representations, ICLR 2022 - Virtual, Online
Duration: Apr 25 2022Apr 29 2022


Conference10th International Conference on Learning Representations, ICLR 2022
CityVirtual, Online

ASJC Scopus subject areas

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language


Dive into the research topics of 'VICREG: VARIANCE-INVARIANCE-COVARIANCE REGULARIZATION FOR SELF-SUPERVISED LEARNING'. Together they form a unique fingerprint.

Cite this