Abstract
In this paper, we address the vision-based detection and tracking problems of multiple aerial vehicles using a single camera and Inertial Measurement Unit (IMU) as well as the corresponding perception consensus problem (i.e., uniqueness and identical IDs across all observing agents). We design several vision-based decentralized Bayesian multi-tracking filtering strategies to resolve the association between the incoming unsorted measurements obtained by a visual detector algorithm and the tracked agents. We compare their accuracy in different operating conditions as well as their scalability according to the number of agents in the team. This analysis provides useful insights about the most appropriate design choice for the given task. We further show that the proposed perception and inference pipeline which includes a Deep Neural Network (DNN) as visual target detector is lightweight and capable of concurrently running control and planning with Size, Weight, and Power (SWaP) constrained robots on-board. Experimental results show the effective tracking of multiple drones in various challenging scenarios such as heavy occlusions.
Original language | English (US) |
---|---|
Pages (from-to) | 380-387 |
Number of pages | 8 |
Journal | IEEE International Conference on Intelligent Robots and Systems |
DOIs | |
State | Published - 2022 |
Event | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan Duration: Oct 23 2022 → Oct 27 2022 |
ASJC Scopus subject areas
- Control and Systems Engineering
- Software
- Computer Vision and Pattern Recognition
- Computer Science Applications