Visual and inertial multi-rate data fusion for motion estimation via Pareto-optimization

Giuseppe Loianno, Vincenzo Lippiello, Carlo Fischione, Bruno Siciliano

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Motion estimation is an open research field in control and robotic applications. Sensor fusion algorithms are generally used to achieve an accurate estimation of the vehicle motion by combining heterogeneous sensors measurements with different statistical characteristics. In this paper, a new method that combines measurements provided by an inertial sensor and a vision system is presented. Compared to classical modelbased techniques, the method relies on a Pareto optimization that trades off the statistical properties of the measurements. The proposed technique is evaluated with simulations in terms of computational requirements and estimation accuracy with respect to a classical Kalman filter approach. It is shown that the proposed method gives an improved estimation accuracy at the cost of a slightly increased computational complexity.

Original languageEnglish (US)
Title of host publicationIROS 2013
Subtitle of host publicationNew Horizon, Conference Digest - 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
Pages3993-3999
Number of pages7
DOIs
StatePublished - 2013
Event2013 26th IEEE/RSJ International Conference on Intelligent Robots and Systems: New Horizon, IROS 2013 - Tokyo, Japan
Duration: Nov 3 2013Nov 8 2013

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other2013 26th IEEE/RSJ International Conference on Intelligent Robots and Systems: New Horizon, IROS 2013
Country/TerritoryJapan
CityTokyo
Period11/3/1311/8/13

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Visual and inertial multi-rate data fusion for motion estimation via Pareto-optimization'. Together they form a unique fingerprint.

Cite this