TY - GEN
T1 - Visual Pattern-Driven Exploration of Big Data
AU - Behrisch, Michael
AU - Krüeger, Robert
AU - Lekschas, Fritz
AU - Schreck, Tobias
AU - Gehlenborg, Nils
AU - Pfister, Hanspeter
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/11/13
Y1 - 2018/11/13
N2 - Pattern extraction algorithms are enabling insights into the ever-growing amount of today's datasets by translating reoccurring data properties into compact representations. Yet, a practical problem arises: With increasing data volumes and complexity also the number of patterns increases, leaving the analyst with a vast result space. Current algorithmic and especially visualization approaches often fail to answer central overview questions essential for a comprehensive understanding of pattern distributions and support, their quality, and relevance to the analysis task. To address these challenges, we contribute a visual analytics pipeline targeted on the pattern-driven exploration of result spaces in a semi- automatic fashion. Specifically, we combine image feature analysis and unsupervised learning to partition the pattern space into interpretable, coherent chunks, which should be given priority in a subsequent in-depth analysis. In our analysis scenarios, no ground-truth is given. Thus, we employ and evaluate novel quality metrics derived from the distance distributions of our image feature vectors and the derived cluster model to guide the feature selection process. We visualize our results interactively, allowing the user to drill down from overview to detail into the pattern space and demonstrate our techniques in two case studies on Earth observation and biomedical genomic data.
AB - Pattern extraction algorithms are enabling insights into the ever-growing amount of today's datasets by translating reoccurring data properties into compact representations. Yet, a practical problem arises: With increasing data volumes and complexity also the number of patterns increases, leaving the analyst with a vast result space. Current algorithmic and especially visualization approaches often fail to answer central overview questions essential for a comprehensive understanding of pattern distributions and support, their quality, and relevance to the analysis task. To address these challenges, we contribute a visual analytics pipeline targeted on the pattern-driven exploration of result spaces in a semi- automatic fashion. Specifically, we combine image feature analysis and unsupervised learning to partition the pattern space into interpretable, coherent chunks, which should be given priority in a subsequent in-depth analysis. In our analysis scenarios, no ground-truth is given. Thus, we employ and evaluate novel quality metrics derived from the distance distributions of our image feature vectors and the derived cluster model to guide the feature selection process. We visualize our results interactively, allowing the user to drill down from overview to detail into the pattern space and demonstrate our techniques in two case studies on Earth observation and biomedical genomic data.
KW - Pattern Analysis
KW - Pattern-Driven Exploration
KW - Quality Metrics
KW - User Guidance
KW - Visual Analytics
UR - http://www.scopus.com/inward/record.url?scp=85059119512&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059119512&partnerID=8YFLogxK
U2 - 10.1109/BDVA.2018.8534028
DO - 10.1109/BDVA.2018.8534028
M3 - Conference contribution
AN - SCOPUS:85059119512
T3 - 2018 International Symposium on Big Data Visual and Immersive Analytics, BDVA 2018
BT - 2018 International Symposium on Big Data Visual and Immersive Analytics, BDVA 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2018 International Symposium on Big Data Visual and Immersive Analytics, BDVA 2018
Y2 - 17 October 2018 through 19 October 2018
ER -