VRL3: A Data-Driven Framework for Visual Deep Reinforcement Learning

Che Wang, Xufang Luo, Keith Ross, Dongsheng Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose VRL3, a powerful data-driven framework with a simple design for solving challenging visual deep reinforcement learning (DRL) tasks. We analyze a number of major obstacles in taking a data-driven approach, and present a suite of design principles, novel findings, and critical insights about data-driven visual DRL. Our framework has three stages: in stage 1, we leverage non-RL datasets (e.g. ImageNet) to learn task-agnostic visual representations; in stage 2, we use offline RL data (e.g. a limited number of expert demonstrations) to convert the task-agnostic representations into more powerful task-specific representations; in stage 3, we fine-tune the agent with online RL. On a set of challenging hand manipulation tasks with sparse reward and realistic visual inputs, compared to the previous SOTA, VRL3 achieves an average of 780% better sample efficiency. And on the hardest task, VRL3 is 1220% more sample efficient (2440% when using a wider encoder) and solves the task with only 10% of the computation. These significant results clearly demonstrate the great potential of data-driven deep reinforcement learning.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713871088
StatePublished - 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: Nov 28 2022Dec 9 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35
ISSN (Print)1049-5258

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period11/28/2212/9/22

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'VRL3: A Data-Driven Framework for Visual Deep Reinforcement Learning'. Together they form a unique fingerprint.

Cite this