TY - GEN
T1 - Weak zero-knowledge beyond the black-box barrier
AU - Bitansky, Nir
AU - Khurana, Dakshita
AU - Paneth, Omer
N1 - Publisher Copyright:
© 2019 Association for Computing Machinery.
PY - 2019/6/23
Y1 - 2019/6/23
N2 - The round complexity of zero-knowledge protocols is a longstanding open question, yet to be settled under standard assumptions. So far, the question has appeared equally challenging for relaxations such as weak zero-knowledge and witness hiding. Protocols satisfying these relaxed notions under standard assumptions have at least four messages, just like full-fledged zero-knowledge. The difficulty in improving round complexity stems from a fundamental barrier: none of these notions can be achieved in three messages via reductions (or simulators) that treat the verifier as a black box. We introduce a new non-black-box technique and use it to obtain the first protocols that cross this barrier under standard assumptions. We obtain weak zero-knowledge for NP in two messages, assuming the existence of quasipolynomially-secure fully-homomorphic encryption and other standard primitives (known based on the quasipolynomial hardness of Learning with Errors), and subexponentially-secure one-way functions. We also obtain weak zero-knowledge for NP in three messages under standard polynomial assumptions (following for example from fully homomorphic encryption and factoring). We also give, under polynomial assumptions, a two-message witness-hiding protocol for any language L ∈ NP that has a witness encryption scheme. This protocol is publicly verifiable. Our technique is based on a new homomorphic trapdoor paradigm, which can be seen as a non-black-box analog of the classic Feige-Lapidot-Shamir trapdoor paradigm.
AB - The round complexity of zero-knowledge protocols is a longstanding open question, yet to be settled under standard assumptions. So far, the question has appeared equally challenging for relaxations such as weak zero-knowledge and witness hiding. Protocols satisfying these relaxed notions under standard assumptions have at least four messages, just like full-fledged zero-knowledge. The difficulty in improving round complexity stems from a fundamental barrier: none of these notions can be achieved in three messages via reductions (or simulators) that treat the verifier as a black box. We introduce a new non-black-box technique and use it to obtain the first protocols that cross this barrier under standard assumptions. We obtain weak zero-knowledge for NP in two messages, assuming the existence of quasipolynomially-secure fully-homomorphic encryption and other standard primitives (known based on the quasipolynomial hardness of Learning with Errors), and subexponentially-secure one-way functions. We also obtain weak zero-knowledge for NP in three messages under standard polynomial assumptions (following for example from fully homomorphic encryption and factoring). We also give, under polynomial assumptions, a two-message witness-hiding protocol for any language L ∈ NP that has a witness encryption scheme. This protocol is publicly verifiable. Our technique is based on a new homomorphic trapdoor paradigm, which can be seen as a non-black-box analog of the classic Feige-Lapidot-Shamir trapdoor paradigm.
KW - Homomorphic trapdoor
KW - Non black-box simulation
KW - Witness hiding
KW - Zero-knowledge
UR - http://www.scopus.com/inward/record.url?scp=85068752680&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068752680&partnerID=8YFLogxK
U2 - 10.1145/3313276.3316382
DO - 10.1145/3313276.3316382
M3 - Conference contribution
AN - SCOPUS:85068752680
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 1091
EP - 1102
BT - STOC 2019 - Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
A2 - Charikar, Moses
A2 - Cohen, Edith
PB - Association for Computing Machinery
T2 - 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019
Y2 - 23 June 2019 through 26 June 2019
ER -