What Does Dynamic Optimality Mean in External Memory?

Michael A. Bender, Martín Farach-Colton, William Kuszmaul

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Abstract

    A data structure A is said to be dynamically optimal over a class of data structures C if A is constant-competitive with every data structure C ∈ C. Much of the research on binary search trees in the past forty years has focused on studying dynamic optimality over the class of binary search trees that are modified via rotations (and indeed, the question of whether splay trees are dynamically optimal has gained notoriety as the so-called dynamic-optimality conjecture). Recently, researchers have extended this to consider dynamic optimality over certain classes of external-memory search trees. In particular, Demaine, Iacono, Koumoutsos, and Langerman propose a class of external-memory trees that support a notion of tree rotations, and then give an elegant data structure, called the Belga B-tree, that is within an O(log log N)-factor of being dynamically optimal over this class. In this paper, we revisit the question of how dynamic optimality should be defined in external memory. A defining characteristic of external-memory data structures is that there is a stark asymmetry between queries and inserts/updates/deletes: by making the former slightly asymptotically slower, one can make the latter significantly asymptotically faster (even allowing for operations with sub-constant amortized I/Os). This asymmetry makes it so that rotation-based search trees are not optimal (or even close to optimal) in insert/update/delete-heavy external-memory workloads. To study dynamic optimality for such workloads, one must consider a different class of data structures. The natural class of data structures to consider are what we call buffered-propagation trees. Such trees can adapt dynamically to the locality properties of an input sequence in order to optimize the interactions between different inserts/updates/deletes and queries. We also present a new form of beyond-worst-case analysis that allows for us to formally study a continuum between static and dynamic optimality. Finally, we give a novel data structure, called the Jεllo Tree, that is statically optimal and that achieves dynamic optimality for a large natural class of inputs defined by our beyond-worst-case analysis.

    Original languageEnglish (US)
    Title of host publication13th Innovations in Theoretical Computer Science Conference, ITCS 2022
    EditorsMark Braverman
    PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
    ISBN (Electronic)9783959772174
    DOIs
    StatePublished - Jan 1 2022
    Event13th Innovations in Theoretical Computer Science Conference, ITCS 2022 - Berkeley, United States
    Duration: Jan 31 2022Feb 3 2022

    Publication series

    NameLeibniz International Proceedings in Informatics, LIPIcs
    Volume215
    ISSN (Print)1868-8969

    Conference

    Conference13th Innovations in Theoretical Computer Science Conference, ITCS 2022
    Country/TerritoryUnited States
    CityBerkeley
    Period1/31/222/3/22

    Keywords

    • Buffer propagation
    • Dynamic optimality
    • External memory
    • Search trees

    ASJC Scopus subject areas

    • Software

    Fingerprint

    Dive into the research topics of 'What Does Dynamic Optimality Mean in External Memory?'. Together they form a unique fingerprint.

    Cite this