Wireless powering of mm-scale fully-on-chip neural interfaces

Jiwoong Park, Chul Kim, Abraham Akinin, Sohmyung Ha, Gert Cauwenberghs, Patrick P. Mercier

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents guidelines for the design and optimization of on-chip coils used for wirelessly-powered mm-scale neural implants. Since available real estate is limited, on-chip coil design involves managing difficult trade-offs between the number of turns, trace width and spacing, proximity to other active circuits and metalization, quality factor, matching network performance/size, and load impedance conditions, all towards achieving high power transfer efficiency. To illustrate the design optimization procedure, a 3 × 3 mm2 on-chip coil is designed, and measurement results reveal a 3.82 % power transfer efficiency for a 1.6 kΩ load that mimics a 100 μW neural interface.

Original languageEnglish (US)
Title of host publication2017 IEEE Biomedical Circuits and Systems Conference, BioCAS 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-4
Number of pages4
ISBN (Electronic)9781509058037
DOIs
StatePublished - Jul 2 2017
Event2017 IEEE Biomedical Circuits and Systems Conference, BioCAS 2017 - Torino, Italy
Duration: Oct 19 2017Oct 21 2017

Publication series

Name2017 IEEE Biomedical Circuits and Systems Conference, BioCAS 2017 - Proceedings
Volume2018-January

Other

Other2017 IEEE Biomedical Circuits and Systems Conference, BioCAS 2017
Country/TerritoryItaly
CityTorino
Period10/19/1710/21/17

ASJC Scopus subject areas

  • Biomedical Engineering
  • Electrical and Electronic Engineering
  • Instrumentation

Fingerprint

Dive into the research topics of 'Wireless powering of mm-scale fully-on-chip neural interfaces'. Together they form a unique fingerprint.

Cite this