TY - JOUR
T1 - W2,1 regularity for solutions of the Monge-Ampère equation
AU - de Philippis, Guido
AU - Figalli, Alessio
PY - 2013/4
Y1 - 2013/4
N2 - In this paper we prove that a strictly convex Alexandrov solution u of the Monge-Ampère equation, with right-hand side bounded away from zero and infinity, is W2,1loc. This is obtained by showing higher integrability a priori estimates for D2u, namely D2u∈LlogkL for any k∈ℕ.
AB - In this paper we prove that a strictly convex Alexandrov solution u of the Monge-Ampère equation, with right-hand side bounded away from zero and infinity, is W2,1loc. This is obtained by showing higher integrability a priori estimates for D2u, namely D2u∈LlogkL for any k∈ℕ.
UR - http://www.scopus.com/inward/record.url?scp=84874996202&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874996202&partnerID=8YFLogxK
U2 - 10.1007/s00222-012-0405-4
DO - 10.1007/s00222-012-0405-4
M3 - Article
AN - SCOPUS:84874996202
SN - 0020-9910
VL - 192
SP - 55
EP - 69
JO - Inventiones Mathematicae
JF - Inventiones Mathematicae
IS - 1
ER -